ray.rllib.utils.numpy.softmax#
- ray.rllib.utils.numpy.softmax(x: numpy.ndarray | list, axis: int = -1, epsilon: float | None = None) numpy.ndarray[source]#
 Returns the softmax values for x.
The exact formula used is: S(xi) = e^xi / SUMj(e^xj), where j goes over all elements in x.
- Parameters:
 x – The input to the softmax function.
axis – The axis along which to softmax.
epsilon – Optional epsilon as a minimum value. If None, use
SMALL_NUMBER.
- Returns:
 The softmax over x.