#!/usr/bin/env pythonimportargparseimportrayfromrayimporttunefromray.tune.examples.pbt_functionimportpbt_functionfromray.tune.schedulers.pb2importPB2if__name__=="__main__":parser=argparse.ArgumentParser()parser.add_argument("--smoke-test",action="store_true",help="Finish quickly for testing")args,_=parser.parse_known_args()ifargs.smoke_test:ray.init(num_cpus=2)# force pausing to happen for testperturbation_interval=5pbt=PB2(time_attr="training_iteration",perturbation_interval=perturbation_interval,hyperparam_bounds={# hyperparameter bounds."lr":[0.0001,0.02],},)tuner=tune.Tuner(pbt_function,run_config=tune.RunConfig(name="pbt_test",verbose=False,stop={"training_iteration":30,},failure_config=tune.FailureConfig(fail_fast=True,),),tune_config=tune.TuneConfig(scheduler=pbt,metric="mean_accuracy",mode="max",num_samples=8,reuse_actors=True,),param_space={"lr":0.0001,# note: this parameter is perturbed but has no effect on# the model training in this example"some_other_factor":1,# This parameter is not perturbed and is used to determine# checkpoint frequency. We set checkpoints and perturbations# to happen at the same frequency."checkpoint_interval":perturbation_interval,},)results=tuner.fit()print("Best hyperparameters found were: ",results.get_best_result().config)