ray.rllib.utils.numpy.softmax#
- ray.rllib.utils.numpy.softmax(x: numpy.ndarray | list, axis: int = -1, epsilon: float | None = None) numpy.ndarray[source]#
- Returns the softmax values for x. - The exact formula used is: S(xi) = e^xi / SUMj(e^xj), where j goes over all elements in x. - Parameters:
- x – The input to the softmax function. 
- axis – The axis along which to softmax. 
- epsilon – Optional epsilon as a minimum value. If None, use - SMALL_NUMBER.
 
- Returns:
- The softmax over x.