Source code for ray.llm._internal.common.base_pydantic
from pydantic import BaseModel, ConfigDict
from typing import Type, TypeVar
import yaml
ModelT = TypeVar("ModelT", bound=BaseModel)
class BaseModelExtended(BaseModel):
# NOTE(edoakes): Pydantic protects the namespace `model_` by default and prints
# warnings if you define fields with that prefix. However, we added such fields
# before this behavior existed. To avoid spamming user-facing logs, we mark the
# namespace as not protected. This means we need to be careful about overriding
# internal attributes starting with `model_`.
# See: https://github.com/anyscale/ray-llm/issues/1425
model_config = ConfigDict(protected_namespaces=tuple())
@classmethod
def parse_yaml(cls: Type[ModelT], file, **kwargs) -> ModelT:
kwargs.setdefault("Loader", yaml.SafeLoader)
dict_args = yaml.load(file, **kwargs)
return cls.model_validate(dict_args)